

Project Presentation

Simon Jobin Michaël Lévesque Charles Vidal

Group Description

• Extra curricular project

4th generation, Toulouse, MAV07

- 4 undergraduate students from different engineering fields
- 3 years of experience, 4 generations of MAV, from teleoperated to unmanned

1st prototype, MAV05

2nd prototype, MAV06

3rd generation UVS Canada

General Overview of UAV

- General specifications
 - Weight: 475 g
 - Wingspan: 48 cm
 - Max level speed : 100 km/h
 - Average cruise speed : 60 km/h
 - Stall speed : 40 km/h
 - Flight endurance : 15 min
 - Communication range over 1.5 km
- Composite wing and fuselage (fiberglass / epoxy with polystyrene core)
- Paparazzi autopilot equipped with thermopiles
- Constant airplane videolink with small CCD color camera
- 3 flight modes possible
 - Manual, assisted and fully autonomous

Airplane Design

- Iterative design: 40/48 cm wingspan
- Elevon control : Pitch and roll by the same two surfaces
- Flying wing configuration
 - Auto-stable model
 - Optimize the lift surface

Fabrication Techniques

• Wing

- Hot wire cutting of foam core following airfoil geometry
- Use of Mylar® sheet for perfect surface finish
- Vacuum bagging

• Fuselage

- Fuselage covered with differents kinds of fiber density to reinforce particuliar places
- Vacuum bagging
- Aircraft assembly
 - Electronic components are installed in the fuselage core by grooving their shape

Schematics of Components

Aircraft video system

Paparazzi

• Stabilisation is made through IR sensors, based on temperature difference between the earth and the sky

- Classic loops are used for stability and navigation
 - Roll rate
 - Pitch rate
 - Navigation
 - Climb rate

Ground Control Station

Flight Routine and Flight Crew

• Flight routine

- Mission is programmed, and tested in software simulation
- Plane is verified prior to take off (motors, visual check up of plane)
- GPS fix is obtained
- Communication between plane and GCS is verified
- Plane is launched manually
- Low altitude manual flight is performed to verify infrared sensors
- AUTO1 (assisted mode) is activated by the pilot to test flight stability
- Then AUTO2 (autonomous mode) is activated
- Prior to landing, plane is switched back to MANUAL by the pilot and is landed manually

• Flight crew (3 people)

- Pilot
- GCS supervisor
- Video watcher

Safety Features

- Return home function
- Instant Kill switch
- Video system
- Flight plan Simulator

Sponsors

Platine / Platinum

